List of Figures

1.1 Structural model and corresponding DOS as described within figure for zero, one and two dimensional nano-materials. 3

1.2 Schematic representation of different type of semiconductor heterostructures. Here solid and empty circles denote electron and hole respectively. Band offsets are shown by blue arrows. 5

1.3 Schematic of a metal-semiconductor heterojunction. E_V, E_C are the valence band maximum and conduction band minimum of the semiconductor, E_F is the Fermi energy of the composite system. Φ_m, χ, Φ_B are the work-function of the metal, electron affinity of the semiconductor and Schottky barrier height respectively. 6

1.4 (a) Super-exchange between atoms when d-orbitals are connected in a line via O atom, (b) super-exchange between atoms when d-orbitals are orthogonally connected via O atom. 8

1.5 Schematic description of double exchange mechanism. (a) Ferromagnetic configuration of Mn t_{2g} core spins that allows hopping of electrons in the e_g state. (b) Antiferromagnetic configuration of Mn t_{2g} core spins where hopping of electron is prohibited. 9

1.6 Schematic representation of p-d exchange mechanism. 10

1.7 Band structure of a topological insulator. 11

2.1 Flow chart for self-consistent method 28
2.2 A schematic representation of all electron wave function ψ_V and core potential Z/r along with the modified pseudopotential wavefunction $\psi_{pseudo}(r)$ and pseudopotential V_{pseudo}. (Adopted from Wikipedia) 39

2.3 Schematic of the device (or the transport channel) marked as C in between two electrodes marked as L and R. 48

3.1 Our modeled heterostructures (Here two cations (A,B) are in gray and magenta color and two anions (X,Y) are in yellow and green color) 62

3.2 Model for transport calculation of the small coupled CdS/ZnSe quantum dot between gold leads. 63

3.3 Schematic description for the method proposed by Hinuma et. al.27 to calculate valence band offset. 64

3.4 Band gap for different semiconductors 66

3.5 Band alignment between different nanoclusters without any attachment. 67

3.6 HOMO offset calculated from position of HOMO and LUMO of individual clusters. Different combinations for common cation systems are separated by dotted line. 68

3.7 Partial density of states for CdS-ZnSe heterostructure (6 bonds) using HSE06 70

3.8 Energy resolved charge density plot for CdS-ZnSe CQD with 2 bonds and 6 bonds (using GGA-PBE). 71

3.9 HOMO offset for the coupled dots with 2 bonds bridge at the interface calculated from two different methods using HSE06. 72

3.10 HOMO offset for the coupled dots with 6 bonds bridge at the interface calculated from two different methods using HSE06. 72

3.11 Absorption for common anion and cation systems using HSE06. Solid and dotted curves are for 2 bonds and 6 bonds coupled clusters respectively. 73

3.12 Iso-surface and energy level diagram for 2 bonds and 6 bonds coupled clusters (using GGA-PBE). 74

3.13 (a) Transmission spectra for CdS-ZnSe coupled quantum dots with 6 bonds bridge at the interface. The molecular projected self consistent Hamiltonian (MPSH) states for 6 bonds are shown as vertical lines above the plot and E_F corresponds to the Fermi energy of Au, (b)I-V characteristic for CdS-ZnSe coupled quantum dots with 6 bonds bridge at the interface. 76
3.14 (a) Transmission spectra for CdS-ZnSe coupled quantum dots with 2 bonds bridge at the interface. The molecular projected self consistent Hamiltonian (MPSH) states for 2 bonds are shown as vertical lines above the plot and E_F corresponds to Fermi energy of Au, (b) I-V characteristic for CdS-ZnSe coupled quantum dots with 2 bonds bridge at the interface.

4.1 (a) Pure and (b) alloyed interface of CdS-ZnSe coupled quantum dots. Here Cd, Zn, S, Se are in grey, magenta, yellow and green color respectively. (3-11) plane of CdS is attached to (111) plane of ZnSe.

4.2 Total DOS for individual CdS, ZnSe dot and their coupled dot with pure and alloyed interface as described in the text.

4.3 Iso-surface of charge density for (a) HOMO and (b) LUMO state of CdS-ZnSe coupled quantum dots.

4.4 Total and partial DOS for CdS-ZnSe coupled quantum dots.

4.6 (a) ERCD for unrelaxed structure and (b) strain profile for CdS-ZnSe CQD.

4.7 (a) Model of (1:2) system, (b) energy resolved charge density plot for (1:2) system, (c) Model of (1:2:3) system, (d) energy resolved charge density plot for (1:2:3) system.

4.8 ZnSe coupled quantum dot. Here balls with magenta and indigo colors are Zn atoms and with yellow, green colors are the Se atoms and with sky blue color is H atoms.

4.9 (a) Wurtzite ZnSe nanowire, (b) zinc-blende ZnSe nanowire. Here balls with magenta, yellow and sky blue color are Zn, Se and H atoms respectively.

4.10 Iso-surface of charge density of VBM and CBM for ZnSe coupled quantum dot, ZB nanowire and WZ nanowire. Iso-surface is shown in orange color.

4.11 Model of M-S heterojunction for (a) Au/Pt (111) surface with CdSe (0001) surface. Blue dotted line indicates the interface and (b) Au/Pt tipped CdSe quantum dot.
4.12 (a) Relaxed structure with layer number in CdSe side, (b) Total and partial DOS for the interface of Au(111) and CdSe (0001), (c) layer projected DOS for the interface of Au(111) and CdSe (0001). 105
4.13 (a) Iso-surface of difference in charge density ($<\Delta n(z)>$), (b) variation of $<\Delta n(z)>$ along z for the interface of Au(111) and CdSe (0001) planes. Red and blue surface denote the accumulation and depletion of charge density. 107
4.14 (a) Iso-surface of difference in averaged charge density, (b) layer projected DOS, (c) variation of $<\Delta n(z)>$ along z for the interface of Pt (111) and CdSe (0001) planes. 108
4.15 (a) Iso-surface of difference in averaged charge density, (b) layer projected DOS, (c) variation of $<\Delta n(z)>$ along z for Au tipped CdSe quantum dot. 109
4.16 (a) Iso-surface of difference in averaged charge density, (b) layer projected DOS, (c) variation of $<\Delta n(z)>$ along Z for Pt tipped CdSe quantum dot. 111
5.1 Structures of the different polytypes of bulk InAs. [Ref. 24] 121
5.2 Schematic to illustrate strain profile. 122
5.3 (a) Band gap of bulk InAs polytypes and (b) band alignment (at Γ point) of bulk polytypes. 124
5.4 (a) Band gap of InAs polytype nanowires with different percentage of hexagonalities and (b) Band alignment for InAs polytype nanowires. 125
5.5 Band structures for the polytypes InAs nanowires. 126
5.6 Top and side view of iso-surface of charge density in green color for the polytypes InAs nanowires. 127
5.7 (a) Schematic band alignment for the WZ/ZB heterostructure, (b) proposed band alignment for WZ/ZB heterostructure with 80% WZ fraction. 128
5.8 For WZ(2H)/ZB(3C) coupled nanowire (a) Total DOS, (b) Energy resolved charge density plot, (c) Iso-surface of VBM and CBM, and, (d) Strain profile. 129
5.9 For 2H/4H coupled nanowire (a) Total DOS, (b) Energy resolved charge density plot where $E_F = -3.35$ eV, (c) Iso-surface of VBM and CBM, and, (d) Strain profile for 2H/4H where red line is for cationic plane and blue line is for anionic plane. 130
5.10 For 2H/6H coupled nanowire (a) Total DOS, (b) Energy resolved charge density plot where $E_F = -3.07$ eV, (c) Iso-surface of VBM and CBM, and, (d) Strain profile for 2H/6H where red line is for cationic plane and blue line is for anionic plane.
5.11 (a) Top and side view of monolayer of [111] plane of ZB-InAs, (b) top and side view of monolayer of [110] plane of ZB-InAs.
5.12 (a) DOS, (b) band structure without SOC of monolayer of InAs (111) plane and (c) DOS, (d) band structure with SOC of monolayer of InAs (111) plane.
5.13 Absorption coefficient for multilayer of InAs two dimensional sheet.
5.14 Spin-polarized DOS and band structure for (a) armchair ribbon and (b) zigzag ribbon.
5.15 Magnetization density for zigzag nano-ribbon (top view)
6.1 Ultrathin pure ZnO nanowire. Zn, O, H are in blue, light pink and black colors. (a) side view, (b) cross-sectional view.
6.2 Formation energy (per dopant) for different configurations for Mn/Gd/Nd doped ZnO nanowire.
6.3 Total spin polarized (FM) density of states for (a) pristine ZnO, (b) a pair of Mn doped ZnO, (c) a pair of Mn doped ZnO with O vacancy (V_O) in far configuration, and, (d) a pair of Mn doped ZnO with Zn vacancy (V_Zn) in near configuration.
6.4 Spin polarized (FM) density of states for (a) a pair of Gd doped ZnO, (b) a pair of Gd doped ZnO with O vacancy (V_O) in far configuration, and, (c) a pair of Gd doped ZnO with Zn vacancy (V_Zn) in near configuration.
6.5 Spin polarized (FM) density of states for (a) a pair of Nd doped ZnO, (b) a pair of Nd doped ZnO with O vacancy (V_O) in far configuration, and, (c) a pair of Nd doped ZnO with Zn vacancy (V_Zn) in near configuration.
6.6 Density of states with SOC with magnetization parallel to nanowire axis for (a) a pair of Nd doped ZnO, (b) a pair of Nd doped ZnO with O vacancy (V_O) in far configuration, and, (c) a pair of Nd doped ZnO with Zn vacancy (V_Zn) in near configuration.
6.7 Band dispersions of Mn doped (FM configuration) ZnO NW with and without vacancies for the majority spin channel.
6.8 Absorption spectra for a pair of Mn doped ZnO NW with and without vacancies. .. 157
6.9 Absorption spectra for a pair of Gd doped ZnO NW with and without vacancies. .. 158
6.10 Absorption spectra for a pair of Nd doped ZnO NW with and without vacancies. .. 159

7.1 Structure of monolayer of [100] and [110] plane of PbS. 171
7.2 Band structure of bulk rock-salt PbS, (a) without SOC and (b) with SOC. 172
7.3 Band structure of monolayer of [100] PbS, (a) without SOC and (b) with SOC ... 173
7.4 Fat band of monolayer of [100] PbS. Circles and tri-angels describe the contribution Pb and S respectively. 174
7.5 Band structure for different value of \(\lambda \) for monolayer of [100] sheet of PbS. Red circles and blue circles denote S-p and Pb-p contributions respectively. 175
7.6 Band structure of monolayer of [110] PbS, (a) without SOC and (b) with SOC ... 176
7.7 Fat band of monolayer of [110] PbS. Circles and tri-angels describe the contribution Pb and S respectively. 177
7.8 Iso-surface of electron localization function for (a) [110] and (b) [100] sheet. Pb and S atoms are indicated by grey and yellow colors respectively. 178
7.9 Band structure of [110] sheet (a) with Pb vacancy, (b) S vacancy........ 179
7.10 Absorption Co-efficient of monolayer and multi-layers of [100] and [110] plane of PbS. .. 180