List of Figures

Figure 1.1: Power Reduction Opportunities ... 3
Figure 2.1: Anti Fuse - Switch ... 16
Figure 2.2: The EPROM Transistor .. 16
Figure 2.3: SRAM Cell with (a) Pass – Transistor, (b) Transmission Gate, (c) Multiplexer 18
Figure 2.4: HRL SRAM Cell ... 18
Figure 2.5: A 2- Input LUT ... 19
Figure 2.6: Multiplexer – Based Logic Cell ... 20
Figure 2.7: Multiplexer and Basic Gates LCELL Proposed by Atmel TM (Courtesy of Atmel TM Co.) 21
Figure 2.8: Actel TM ACT1 Interconnect Architecture (Row – Based) 22
Figure 2.9: XC4000E/XL/XV Interconnect Architecture (Segmented – Based) (Courtesy of Xilinx TM Corporation) .. 23
Figure 2.10: XC4000 Series Interconnect Resources (Courtesy of Xilinx TM Co) 23
Figure 2.11: Hierarchical Interconnect (Courtesy of Altera TM Corporation) 24
Figure 2.12: Embedded Memory (a) Block, (b) Distributed Cells 25
Figure 2.13: Standard CMOS Inverter .. 26
Figure 2.14: DC Transfer Characteristics of a CMOS Inverter, (a) Voltage and (b) Current 27
Figure 2.15: Input Voltage and Short – Circuit Current .. 32
Figure 2.16: TTL Input Buffer .. 35
Figure 2.17: Tri – State Output Buffer ... 36
Figure 3.1: Transistor Reordering .. 44
Figure 3.2: Gate restructuring (Figure adapted from the Pennsylvania State University Microsystems Design Laboratory’s tutorial on Low Power Design) ... 45
Figure 3.3: Low Voltage Differential Signalling .. 49
Figure 3.4: Bus Segmentation ... 49
Figure 3.5: Two Bit Charge Recovery Bus ... 50
Figure 3.6: Dead Block Elimination .. 54
Figure 3.7: Performance Versus Power ... 62
Figure 4.1: Detailed Architecture of 4 – Stage Pipelined Processor Under Consideration 71
Figure 4.2: An ALU Architecture for 4 – Stage CPU ... 75
Figure 4.3: Formats for Various Instructions ... 77
Figure 4.4: Detailed Internal Architecture of Instruction Decoder 81
Figure 4.5: Internal Architecture of Multiplexer .. 82
Figure 4.6: Diagram of Instruction Decoder with all relevant Signals 83
Figure 4.7: Main Features of Multiplier Block ... 85
Figure 4.8: Pin Diagram of MULT18X18SIO ... 86
Figure 4.9: Four possible Configures for the B_INPUT Attribute and BREG Attribute ... 87
Figure 4.10: Xilinx SPARTAN – 3E Clock Distribution Network (Courtesy of Xilinx™ Co.) .. 88
Figure 4.11: Internal Element of 2 – to -1 Multiplexer (Courtesy of Xilinx™ Co.) ... 89
Figure 4.12: Quadrant – Based Clock Routing (Courtesy of Xilinx™ Co.) .. 90
Figure 4.13: Data Dependency and Data Forwarding ... 94
Figure 4.14: External Interface ... 94
Figure 4.15: FPGA Design Flow ... 95
Figure 4.16: Summary of Estimated Power Distribution Report ... 97
Figure 4.17: Graphical Representation of Estimated Power Requirements for Internal Modules and Effect of Various Parameters on Power Consumption ... 98
Figure 5.1: Detailed Architecture of 5 – Stage Pipelined Conventional CPU ... 102
Figure 5.2: Summary of Power Consumption Report for 5 – Stage Pipeline CPU .. 103
Figure 5.3: Instruction Fetch for 5 - Stage CPU .. 104
Figure 5.4: Instruction Decode for 5 – Stage CPU .. 105
Figure 5.5: RAM Address for 5 – stage CPU ... 106
Figure 5.6: Instruction Execute for 5 - Stage CPU .. 107
Figure 5.7: Write Back Stage for 5 – Stage CPU .. 108
Figure 5.8: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of Memory Access Stage Removal) .. 111
Figure 5.9: Instruction Fetch for 4 – Stage CPU ... 112
Figure 5.10: Instruction Decode and Operand Fetch for 4 – Stage CPU ... 113
Figure 5.11: Instruction Execute for 4 – Stage CPU ... 114
Figure 5.12: Write Back for 4 – Stage CPU .. 115
Figure 5.13: MUX for Resource Optimization ... 117
Figure 5.14: MUX with Opcode as Selection Logic ... 118
Figure 5.15: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of Resource Sharing Strategy) .. 119
Figure 5.16: RAM Address Multiplexer .. 120
Figure 5.17: Clock – Enabled Global Buffer Resource ... 121
Figure 5.18: Gated Clock – Not Preferable ... 121
Figure 5.19: Clock Enable – Efficient way of Gating a Clock Signal .. 121
Figure 5.20: Summary of Power Consumption Report for 4 – Stage Pipeline CPU (After Implementation of RAM Addressing Scheme and Clock Gating along with earlier Techniques) ... 125
Figure 5.21: Simulated Waveforms for Clk_gating Signal Varification for ALU Related Instructions 126
Figure 5.22: Simulated Waveforms for Clk_gating Signal Verification during RAM Access Instructions 127
Figure 5.23: Verification of Instruction Fetch for 4 – Stage CPU ... 129
Figure 5.24: Verification of Instruction Decode and Operand Fetch for 4 – Stage CPU ... 130
Figure 5.25: Verification of Instruction Execute for 4 – Stage CPU ... 131