List of Figures

<table>
<thead>
<tr>
<th>Description</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 3.1. Cycling conditions for the amplification of 16S rDNA primer set.</td>
<td>59</td>
</tr>
<tr>
<td>Fig 3.2. Cycling conditions for forward and reverse sequencing mixture 16S rDNA primers set.</td>
<td>60</td>
</tr>
<tr>
<td>Fig 4.1. Photograph showing the presence and absence of the growth of sulfide producing bacteria. The bottle on left shows the absence of sulfate reducing bacteria and bottle on right shows the presence of sulfate reducing bacteria after injecting formation fluid in the S-7 medium. The black color (ferrous sulfide precipitate) formation is due to the production of hydrogen sulfide thereby reacting with ferric citrate.</td>
<td>76</td>
</tr>
<tr>
<td>Fig 4.2. Electron micrograph of the bacterial strains isolated from the Indian oil reservoirs of India (Northeastern India). Rod shaped bacterial Strains isolated from the Kathloni oil reservoirs (A), Rod shape bacteria isolated from formation fluid the Ahmedabad Assest (B), long rods shaped isolated from Kathloni oil reservoir (C), rod shaped isolated from formation fluid of the oil reservior of Assam (D), Rod shaped bacteria isolated oil reservoirs of Assam (E), Slender rod shaped bacteria isolated from formation water of oil reservoirs of Assam (F).</td>
<td>78</td>
</tr>
<tr>
<td>Fig 4.3. The gas chromatogram showing the production of volatile fatty acids by sulfide producing bacterial isolates of oil fields (AA- acetic acid, PA- propionic acid, IBA- isobutyric acid, BA- butyric acid, IVA- isovaleric acid, VA- valeric acid). A - standard, B - TERISRB 1001, C - TERI SRB 1010</td>
<td>79</td>
</tr>
<tr>
<td>Fig 4.4. The sulfide production by bacterial strains isolated from the Oil India Limited, Assam. A – Strains TERI SRB 1001-1025, B – Strains 1026-1048</td>
<td>83</td>
</tr>
</tbody>
</table>
Fig 4.5. The gas chromatogram showing the aliphatic fraction in the crude oil collected (A) Kathloni emulsion tank, OIL, Assam and (B) Dikom emulsion tank, OIL, Assam.

Fig 4.6. The graph showing the sulfide production of the strains isolated from the Oil and Natural Gas Corp., Gujarat. A – Strains 2001 to 2013, B – Strains 2014 to 2027.

Fig 4.7. The aliphatic fraction of crude oil obtained from Gujarat oil field western India (A) Jhalora well #104, (B) Emulsion treatment plant of group gathering station.

Fig 4.8. Sulfide production by strains isolated from formation water samples collected from offshore oil field Bombay High of western India.

Fig 4.9. The gas chromatogram of aliphatic fraction of crude oil of Bombay High offshore oil field.

Fig 4.10. The scanning electron micrograph of *Anaerobaculum mobile* growing at 55 °C isolated from formation water collected from the oil wells Oil India Limited, Assam (Northeast India).

Fig 4.11. The dendrogram showing the phylogenetic position of *A. mobile*.

Fig 4.12. Growth of *A. mobile* on various carbon sources at 55 °C and pH 7.5.

Fig 4.13. The growth patterns of *A. mobile* at 55 °C on various nitrogen sources. The experimental set without nitrogen source was kept as control.

Fig 4.14. The growth patterns of *A. mobile* at 55 °C after the utilization of various electron acceptors.

Fig 4.15. The sulfide production by *A. mobile* under the influence of various electron acceptors growing at 55 °C and pH 7.5. There was no sulfide produced by *A. mobile* on other electron acceptors in the same experimental set.

Fig 4.16. Influence of NaCl concentrations on the growth of *A. mobile* at 55 °C, pH 7.5.

Fig 4.17. The influence of pH on the growth of *A. mobile* incubated at 55 °C.

Fig 4.18. The scanning electron micrograph of the *Garciella nitratireducens* growing at 55 °C and pH 7.5.

Fig 4.19. The phylogram based on 16S rDNA sequences indicating the
Position of the strain TERI SRB 1010 amongst members of clusters XII of Clostridiales. Bootstrap values from 100 replications are shown; only values above 95 were considered significant and are reported.

Fig 4.20. The influence of various carbon sources on the growth of *G. nitratireducens* at 55 °C and pH 7.5.

Fig 4.21. The influence of various nitrogen concentrations on the growth of *G. nitratireducens* growing at 55 °C and pH 7.5.

Fig 4.22. The growth of *G. nitratireducens* at 55 °C and pH 7.5 under the influence of various electron acceptors.

Fig 4.23. The growth patterns of *G. nitratireducens* on various NaCl concentrations at 55 °C and pH 7.5.

Fig 4.24. The influence of pH on the growth of *G. nitratireducens* growing at 55 °C.

Fig 4.25. Influence of potassium nitrate on the sulfide production by selected strains. The control shown in figure is the sulfide production by respective strain in absence of nitrate.

Fig 4.26. The cluster analysis of ARDRA (Alu) of 18 strains *G. nitratireducens*. The UPGMA algorithm was applied to the similarity matrix using at and above Jaccard’s coefficient. The 18 strains got delineated into 11 genotypic groups.

Fig 4.27. The cluster analysis of ARDRA (hae) of 18 strains *G. nitratireducens*. The UPGMA algorithm was applied to the similarity matrix using at and above Jaccard’s coefficient. The 18 strains got delineated into 9 genotypic groups.

Fig 4.28. The cluster analysis of ARDRA (EcoR1) of 18 strains *G. nitratireducens*. The UPGMA algorithm was applied to the similarity matrix using at and above Jaccard’s coefficient. The 18 strains got delineated into 12 genotypic groups.

Fig 4.29. The cluster analysis of ITS RFLP (EcoR1) of 18 strains *G. nitratireducens*. The UPGMA algorithm was applied to the similarity matrix using at and above Jaccard’s coefficient. The 18 strains got delineated into 10 genotypic groups.

Fig 4.30. The cluster analysis of ITS RFLP (Hae) of 18 strains *G. nitratireducens*. The UPGMA algorithm was applied to the similarity matrix using at and above Jaccard’s coefficient. The 18 strains got delineated into 12 genotypic groups.
$\textit{nitratireducens}$. The UPGMA algorithm was applied to the similarity matrix using at and above Jaccard’s coefficient. The 18 strains got delineated into 8 genotypic groups.

Fig 4.31. The cluster analysis of ITS RFLP (Hind) of 18 strains $G.\textit{nitratireducens}$. The UPGMA algorithm was applied to the similarity matrix using at and above Jaccard’s coefficient. The 18 strains got delineated into 9 genotypic groups.

Fig 4.32. The cluster analysis of ITS RFLP (Sau) of 18 strains $G.\textit{nitratireducens}$. The UPGMA algorithm was applied to the similarity matrix using at and above Jaccard’s coefficient. The 18 strains got delineated into 8 genotypic groups.

Fig 4.33. The schematic illustration of the treatment of produced water at oil collection station at Kathloni situated in Northeastern India. The samples were collected from Manifold, Storage tank, and Pump delivery (PD) systems.

Fig 4.34. (A) Total population of sulfidogens in the produced water of storage tank (■) and in pump delivery (▲) before and after the biocide treatment. (B) The rate of injection of produced water in the wells before and after the treatment.